RATE DEPENDENCE IN ENGINEERED CEMENTITIOUS COMPOSITES

Enhua Yang and Victor C. Li
Department of Civil and Environmental Engineering, University of Michigan, USA

Abstract
This paper examines the rate dependence in engineered cementitious composite (ECC), a promising material for seismic, impact-, and blast-applications. Research focus has been placed on uncovering the source of rate dependence in ECC and composite re-engineering. Test results show a strong decrease in tensile strain capacity with increasing strain rate in particular versions of ECC. Single fiber pullout test reveals that change in the interface chemical bond with rate is responsible for the loss of composite tensile ductility. Preliminary results in composite re-engineering confirm that extreme ductility of ECC can be retained under seismic loading rate.

1. INTRODUCTION
High performance fiber reinforced cementitious composites (HPFRCC) with high tensile ductility, toughness, and damage-tolerance are potential material solutions for seismic applications [1] and impact- and blast-resistant structures [2]. Under these high-rate loading scenarios; however, it is possible that HPFRCC properties may change and unexpected structural failure could happen. Unfortunately, most available knowledge is limited to HPFRCC quasi-static behavior. Rate dependence of HPFRCC properties has received little attention so far. If HPFRCC were to be applied to high-rate loading applications successfully, a better understanding of its rate dependence is needed.

There are two purposes in the study of the loading rate effects in HPFRCC. The first purpose is to quantify the rate dependence in order to establish a rate dependent constitutive model of HPFRCC for structural analysis and design. The second purpose is to derive knowledge of the sources of rate dependence in HPFRCC. For material
engineers, this knowledge provides important guidance for composite engineering. In this paper, the material engineering approach is adopted. A preliminary study has focused on quantifying rate dependence of composite tensile stress-strain behavior, understanding the sources of rate dependence, and redesigning the composite with desired high rate properties.

2. ENGINEERED CEMENTITIOUS COMPOSITE

Engineered cementitious composite (ECC), a special type of HPFRCC with extreme tensile ductility, is used in this study to investigate the loading rate effects. Figure 1 shows the typical tensile stress-strain curve of ECC under quasi-static monotonic loading. As can be seen, ECC exhibits a tensile strain-hardening behavior similar to that of ductile metals. The “yield point” corresponds to the composite first cracking; subsequent strain-hardening is achieved by a continuous formation of multiple cracks. The ultimate tensile strain capacity of ECC ranges from 3 – 5% which is several hundred times that of normal concrete (~0.01%). The fracture toughness of ECC is similar to that of aluminum alloys [3]. Furthermore, the material remains ductile even when subjected to high shear stresses [4]. The compressive strength of ECC ranges from 40-80 MPa depending on mix composition, the high end similar to that of high strength concrete.

The ingredients in ECC are cement, water, sand, fly ash, fiber, and other chemical additives commonly used in fiber reinforced concrete (FRC). PVA-ECC utilizes short (8 or 12 mm), randomly distributed polymer fibers (e.g. Polyvinyl Alcohol) with a moderate volume fraction (2% or less). With a relatively small amount of short fibers and appropriate particle-size grading, the mixing procedure of ECC is similar to that of normal concrete and
can be produced in regular or self-consolidating [5, 6] processes. The high performance, moderate fiber content combination is attained by micromechanics-based composite optimization [7, 8].

It has been observed experimentally that ECC structural members, such as beams [9], columns [10], walls [11], and connections [12], show superior structural ductility, structural strength, energy absorption and extreme high damage tolerance under monotonic and cyclic loading, when compared with normal R/C structures, even when the ECC members do not contain seismic detailing. This significantly enhanced performance of ECC structural elements is a direct result of the ultra-ductility of ECC, which suppresses the brittle failure mode and promotes synergistic interaction between reinforcement and surrounding ECC. It is plausible that this high-energy absorption feature of R/ECC may be exploited in members subjected to seismic, impact, and blast loading, as long as the tensile ductility of ECC could be retained under high rate loading.

3. REVIEW OF RATE DEPENDENCE IN ECC

Maalej et al [2] investigated the strain rate effect in a hybrid-fiber ECC (1.5 vol.% polyethylene and 0.5 vol.% steel fibers) and concluded that the tensile strain capacity shows almost no rate dependence for strain rate ranging from 2×10^{-6} to 2×10^{-1} 1/s (figure 2). At higher strain rates, the strain capacity (~ 3.2%) and multiple cracking behavior were found to be similar to those in quasi-static tests. A remarkable increase in the ultimate tensile strength (from 3.1 MPa to 6 MPa) with increasing strain rate was also reported. Conversely, Douglas and Billington [13] reported strong rate dependence of tensile ductility in a PVA-ECC (ECC with 2 vol.% polyvinyl alcohol fiber). At the highest strain rate (2×10^{-1} 1/s), the tensile ductility decreased by 50% (from 0.5% to 0.25%), while the ultimate tensile strength doubled that at quasi-static strain rate (2×10^{-5} s$^{-1}$).

Figure 2: Rate dependency in hybrid-fiber ECC tensile ductility (After Maalej et al [2])
These results reveal several interesting observations. First, ECC tensile properties may exhibit rate dependence. Second, the magnitude and tendency of this rate dependence will likely depend on the microstructure/material composition. These observations suggest a need to understand the source of rate dependence, in order to design an ECC with extreme tensile ductility under higher strain-rate loading.

4. **EXPERIMENTS**

4.1 **Material**

A reference ECC, M45 [14], for general applications is used as a control to investigate the rate dependence in ECC. Table 1 shows the mix proportions of M45. The matrix of M45 is comprised of standard mortar components, including type I Portland cement (C), water (W), fly ash (FA, class F), sand (S, 0.11 mm nominal grain size), and superplasticizer (SP). The PVA (REC-15) fiber is produced by Kuraray Co. and mechanical properties are provided in table 2.

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>W</th>
<th>FA</th>
<th>S</th>
<th>SP</th>
<th>PVA (vol.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC-M45</td>
<td>1.0</td>
<td>0.53</td>
<td>1.2</td>
<td>0.8</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2: Mechanical properties of PVA fiber REC15

<table>
<thead>
<tr>
<th>Material</th>
<th>Length (mm)</th>
<th>Diameter (µm)</th>
<th>Tensile Strength (MPa)</th>
<th>Tensile Modulus (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVA-REC15</td>
<td>12</td>
<td>40</td>
<td>1600</td>
<td>40</td>
</tr>
</tbody>
</table>

4.2 **Composite uniaxial tensile test**

A uniaxial tensile test is conducted to quantify the magnitude of rate dependence in ECC tensile stress-strain behavior. Coupon specimen (220mm x 75mm x 12.7mm) aged 28 days with 100mm gage length is tested in uniaxial tensile configuration. A servohydraulic material test machine is used in a displacement control mode and the test strain rate ranges from 10^{-5} to 10^{-1} 1/s (corresponding cross head speed is from 10^{-3} to 10 mm/s). The low end represents the quasi-static test and the high end is the condition for seismic loading.

4.3 **Single fiber pullout test**

To uncover the source of rate dependence, a single fiber pullout test (figure 3) is conducted to examine the rate dependence in fiber/matrix interface properties. Three interface micromechanics parameters, namely the chemical bond strength, G_d (J/m²), frictional bond strength, τ_0 (MPa), and slip hardening coefficient, β, were determined from the pullout curve [15]. The pullout speed ranges from 10^{-3} to 10 mm/s, which is identical with that in composite uniaxial tensile test.
5. RESULTS

5.1 Rate dependence in composite tensile behavior

Preliminary results show strong rate dependence in PVA-ECC M45 tensile properties. Figure 5(a) plots the tensile stress-strain curve of M45 in different strain rates. A descending trend of tensile ductility with increasing strain rate is found for M45 as depicted in figure 5(b). Tensile ductility reduces from 3% to 0.5% at the highest strain rate. Both first cracking strength and ultimate tensile strength were found to increase with increasing strain rate.

Figure 4: Rate dependency in ECC-M45: (a) tensile stress-strain curve and (b) tensile ductility versus strain rate relation
5.2 Rate dependencies in interface properties

Figure 5 presents the rate dependence of interface chemical bond strength, G_d, in M45. A strong rate dependency in G_d is evident. At the highest pullout speed, G_d can be 5 times higher than the static value (from 1.1 to 5.1 J/m2). However, the interface frictional bond strength and slip hardening coefficient show almost no rate dependence at the present pullout speed.

![Figure 5: Rate dependence in interface chemical bond strength, G_d](image)

6. ECC RE-ENGINEERING FOR HIGH RATE APPLICATIONS – PRELIMINARY RESULTS

From the result of micro-scale investigation, specifically rate dependencies in fiber/matrix interface properties, it is concluded that interface chemical bond strength increase is responsible for the low tensile ductility in M45 composite behavior at higher loading rate. The chemical bond increase tends to cause premature fiber rupture, which can lead to drastic loss of tensile ductility. Although it has been tested and recognized that other properties, such as fiber modulus and strength and matrix toughness and strength, may also exhibit rate dependence, not much can be done in terms of modifying rate dependence in these parameters. Therefore, attention is given to modifying interface properties in general, and chemical bond strength in particular. Several attempts have been made to re-tailor ECC for high rate applications and preliminary results are summarized here.

One approach is to eliminate chemical bond between fiber and matrix. If no chemical bond exists, no rate dependence can exist in chemical bond strength. It is well known that PE (polyethylene) fibers show no chemical bond in cement-based composite due to its hydrophobic nature. Hence, a lower rate dependency in PE-ECC is expected when compared with PVA-ECC. This concept is supported by the observations in the test results of Maalej et al [2].
As increase in chemical bond tends to promote fiber breakage, another approach would be to use a shorter fiber length. Figure 6 shows the tensile stress-strain curve of M45 with 8mm PVA fiber at the highest strain rate (0.1/s). The mix proportion of this ECC is exactly the same with M45 except the PVA fiber only has 8mm in length (12mm in M45). As can be seen, the average tensile strain capacity can reach 1.5% which is 3 times higher than 12mm PVA-ECC M45 at the same loading rate.

![Stress-strain curve of ECC M45 with 8mm PVA fiber at the highest strain-rate loading (0.1/s)](image)

Figure 6: Stress-strain curve of ECC M45 with 8mm PVA fiber at the highest strain-rate loading (0.1/s)

It is recognized that increase of chemical bond strength can cause a higher matrix cracking strength and a lower bridging complementary energy. This leads to a smaller margin between peak bridging strength ($\sigma_{B,\text{peak}}$) and matrix cracking strength (σ_c) and between bridging complementary energy (J'_b) and matrix toughness (J_{tip}). Both tendencies are unfavorable to strain-hardening. The third approach to material re-engineering is to delay the rate dependency by imposing a larger margin between $\sigma_{B,\text{peak}}$ and σ_c and between J'_b and J_{tip} in advance.

Lightweight ECC [16] provides a larger margin for strain-hardening condition and has desirable features for seismic applications. By introducing light-weight aggregate, it may also weaken the interface chemical bond, which has a positive effect in delaying rate dependence of PVA-ECC. Table 3 gives the mix proportions of a lightweight PVA-ECC. Lightweight aggregate, glass bubble S60, is produced by 3M Co. Figure 7 shows the tensile stress-strain curve of lightweight ECC at different loading rate (10^{-3} to 10^{-1} 1/s). It is found that tensile strain capacity can be retained (~3.5%) at the highest strain rate.
Table 3: Mix proportions of lightweight ECC by weight

<table>
<thead>
<tr>
<th>C</th>
<th>LA</th>
<th>W</th>
<th>MC</th>
<th>SP</th>
<th>PVA (Vol. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.2</td>
<td>0.45</td>
<td>0.0015</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* LA: Lightweight Aggregate (Glass Bubble S60)
** MC: Methyl Cellulose

Figure 7: Stress-strain curve of lightweight ECC at different loading rates

7. CONCLUSION

This study investigates the rate dependence of ECC and explores the underlying micromechanical sources responsible for the rate effect. This knowledge provides insights for ECC re-engineering. Several preliminary attempts have been made to redesign a new generation of ECC for high rate applications. The following specific conclusions may be drawn:

- The tensile properties of PV A-ECC M45 exhibit strong rate dependence. The tensile strain capacity decreases from 3% to 0.5% when the loading rate increases from quasi-static to seismic strain rate.
- The interfacial chemical bond strength, G_d, of M45 shows a strong rate dependence which contributes to the composite rate dependency. G_d at the highest pullout speed is found to be 5 times that in quasi-static loading.
- Extreme ductility of ECC under higher loading rate could be retained, if properly designed. At seismic loading rate, the tensile strain capacity is 3.2% for ECC with PE fiber, 1.5% for PV A-ECC M45 with 8mm fiber, and 3.5% for lightweight ECC with a
light-weight matrix.

- This research demonstrates that ECC can be engineered with high ductility suitable for high rate loading applications.

REFERENCES

